Raw seismic data are almost always found to be contaminated with coherent or incoherent noise. Concerted efforts are directed at elimination of such noise during processing of the seismic data, so that its interpretation can be carried out accurately. These efforts are more relevant for stratigraphic interpretation and where amplitude analysis is the end goal. Usually the coherent noise trains seen on seismic shot records are eliminated early in the processing, and the subsequent processing steps address any residual incoherent noise component that may persist. This strategy works well in most cases.

But sometimes the low-frequency linear dipping noise is present in the final processed seismic data, and yet goes unnoticed. When such data are worked upon in terms of generation of seismic attributes, the dipping noise can be seen clearly on both vertical and horizontal displays. Another aspect of which some interpreters are aware is that sometimes seismic attributes, when displayed in colored variable density, may not exhibit certain noise patterns – the dipping noise patterns being one of them. But such dipping noise patterns may be seen clearly when the same data are displayed in variable density gray scale.

Noise on Seismic Attribute Data

The post-stack or pre-stack impedance inversion is a typical common seismic attribute generated from seismic data. But it is seen that many methods have been discussed in separate articles of Geophysical Corner published by the first two authors of this article in the May and June 2015 issues of the EXPLORER. We illustrate the above aspect on a segment of an impedance section from west-central Saskatchewan, Canada. It was generated using pre-stack far-angle stack seismic data, before running simultaneous inversion. Figure 1 shows the section in color and the seismic signal maps close to the wave number axis, which is the frequency-wavenumber or the f-k domain. The other domains in the x-t domain. The other domains to which seismic data in the x-t domain is transformed from the x-t domain into a different domain using a mathematical transformation. A domain to which the seismic data is commonly transformed is the frequency-wavenumber or the f-k domain by using Fourier transforms. The seismic signal and the coherent noise that appear tangled up in the x-t domain get separated in the f-k domain. The low-frequency dipping coherent noise maps close to the wave number axis, and the seismic signal maps close to the frequency axis. Now the undesired component in the data is muted, and the remaining data transformed back in the x-t domain. The other domains to which seismic data in the x-t domain can be transformed are the tau-p (using Radon transform) and f-x (using Fourier transform) domains. A concern some analysts have in such cases is that some signal can leak through the removed component, especially when the noise and the signal are not well separated in the transformed space, so that the method may not be an amplitude-friendly process after all.

A different workflow illustrated in figure 2 can be followed in such cases. We begin by first separating the data into the low- and high-frequency components, the former encompassing the frequency range of the dipping noise in the data, which is under discussion in this article. Next,

Figure 1: Segment of an (a) inverted impedance section displayed in color; (b) the same section in (a) displayed in gray scale; (c) when the impedance data are eliminated early in the processing, and the subsequent processing steps address any residual incoherent noise component that may persist. This strategy works well in most cases. But sometimes the low-frequency linear dipping noise is present in the final processed seismic data, and yet goes unnoticed. When such data are worked upon in terms of generation of seismic attributes, the dipping noise can be seen clearly on both vertical and horizontal displays. Another aspect of which some interpreters are aware is that sometimes seismic attributes, when displayed in colored variable density, may not exhibit certain noise patterns – the dipping noise patterns being one of them. But such dipping noise patterns may be seen clearly when the same data are displayed in variable density gray scale.

The post-stack or pre-stack impedance inversion is a typical common seismic attribute generated from seismic data. But it is seen that many methods have been discussed in separate articles of Geophysical Corner published by the first two authors of this article in the May and June 2015 issues of the EXPLORER. We illustrate the above aspect on a segment of an impedance section from west-central Saskatchewan, Canada. It was generated using pre-stack far-angle stack seismic data, before running simultaneous inversion. Figure 1 shows the section in color and the seismic signal maps close to the wave number axis, which is the frequency-wavenumber or the f-k domain. The other domains in the x-t domain. The other domains to which seismic data in the x-t domain is transformed from the x-t domain into a different domain using a mathematical transformation. A domain to which the seismic data is commonly transformed is the frequency-wavenumber or the f-k domain by using Fourier transforms. The seismic signal and the coherent noise that appear tangled up in the x-t domain get separated in the f-k domain. The low-frequency dipping coherent noise maps close to the wave number axis, and the seismic signal maps close to the frequency axis. Now the undesired component in the data is muted, and the remaining data transformed back in the x-t domain. The other domains to which seismic data in the x-t domain can be transformed are the tau-p (using Radon transform) and f-x (using Fourier transform) domains. A concern some analysts have in such cases is that some signal can leak through the removed component, especially when the noise and the signal are not well separated in the transformed space, so that the method may not be an amplitude-friendly process after all.

A different workflow illustrated in figure 2 can be followed in such cases. We begin by first separating the data into the low- and high-frequency components, the former encompassing the frequency range of the dipping noise in the data, which is under discussion in this article. Next,

Figure 2: Workflow for controlled dip-filtering that was performed on the near-, mid- and far-angle stack seismic data, before running simultaneous inversion.
the suppression of the dipping noise is affected by one of the available methods including the f-k filtering described earlier, and subtracted from the input data. Besides the residual dipping noise, this data may contain some residual signal that may have leaked through the filtering process. The higher amplitudes of the dipping noise component are then toned down. The residual component so obtained is added back to filtered low-frequency component and the high-frequency components of the input data. We refer to this workflow as a controlled dip-filtering process.

One could think of running the controlled dip-filtering workflow on the impedance data shown in figure 1a and b. We show the results of such an application in figure 1c. Notice the overly smoothed appearance of the data, which may not be acceptable to the interpreters, for good reason. Not happy with the result, we go back to the input seismic data, which are the near-, mid- and far-angle stacks generated for performing simultaneous inversion and put them through the controlled dip-filtering workflow shown in figure 2. The dip-filtered angle stacks are then put through simultaneous inversion. The impedance section equivalent to figure 1b is shown in gray scale in figure 1d, where the low-frequency dipping noise is no longer seen. No artifact of the dipping noise is seen on the equivalent section shown in color in figure 1e. We thus conclude that the quality of the impedance data is much better now.

Conclusion

The low-frequency dipping noise, if present in the input data, needs to be handled with care and in an amplitude-friendly way before impedance inversion, or for that matter before any attribute computation is carried out. When the P- and S-impedance data derived from simultaneous inversion are free from noise artifacts, we ensure that the subsequent elastic parameter attributes are of good quality and thus amenable to more meaningful interpretation.

Acknowledgements

We thank Xinxiang Li for useful discussions and Repsol Oil and Gas Canada Inc. as well as Arcis Seismic Solutions, TGS, Calgary for permission to publish this article.

Vastar Resources, BP, Explora Seismic Processing, Geokinetics, Talisman and currently is working for Repsol as a geophysical adviser working on projects associated with quantitative interpretation, quality assurance, mentorship and technical developments. Jim Pullishy first encountered the oil and gas industry as a legal surveyor during the boom years of the ’70s locating well sites and pipelines in Drayton Valley and Fort McMurray, after studying survey technology at the Northern Alberta Institute of Technology. Subsequently he graduated with a bachelor’s degree in geophysics from the University of Calgary. His more than 30-year career since then has included initial stints supporting the first generation of interpretive workstations and seismic processing, followed by a lengthy focus on seismic interpretation to generate exploration plays. Pullishy has worked on exploration opportunities on most continents, and his work has taken him from the high Arctic to the tropics. He is currently working at Repsol as a geophysical adviser in the North American regional unit.

Tammy Chow graduated from the University of Calgary in 2006 with a bachelor’s degree in geophysics. She has since been working with Talisman Energy – now Repsol Oil and Gas Canada – in a number of areas and positions. She currently works on the petrotechnical team.