To co-render seismic attributes means to blend two or more seismic attributes into a single, unified data display.

As a result of efforts to demonstrate the value of volumetric interpretation of seismic data, most modern software allows interpretation on time or horizon slices, together with geobody detection and multi-volume and multi-attribute co-rendering.

Advanced display technology and visualization systems accelerate the interpretation process, create expanded insights into prospects and provide new means of communicating these insights to co-workers, management, partners and investors.

Merged Volumes Using Color

A false-color technique used to co-render seismic attributes plots three discrete attribute ranges using red, green and blue (RGB) colors:

- Features imaged with higher values may be displayed in blue.
- Geology described by intermediate values are shown in green.
- Lower values are in red.

From experiences of mixing paints, most people know how these three colors blend, which makes this RGB technique a powerful data-integration and communication tool.

(The procedure has limited value, of course, for people who suffer from color blindness.)

Volume Co-Rendering

In the simplest implementation of RGB co-rendering, each voxel in 3-D space is assigned an RGB triplet, or color. When an interpreter displays a number of vertical and horizontal slices, or displays one or more 3-D seismic volumes, only data nearest the interpreter are seen. By extending this three-component color model to a four-component RGB-alpha color model, where alpha is opacity (or transparency), each voxel can be assigned a reflective or transmissive property of specific strength.

Volume rendering consists of controlling the color and opacity of each voxel and projecting these properties onto an image plane. Such volume rendering allows interpreters to see and interact with features inside the 3-D volumes in their true 3-D perspective.

By using opacity as a function of the value of a given attribute, an interpreter can highlight features of interest within a sub-volume of 3-D seismic data and facilitate the understanding of spatial relationships between features of interest.

In figure 1a we show a strat-cube sculpted from a most-positive principal curvature volume correlated with a vertical slice through a seismic amplitude volume. Note how lineaments of most-positive curvature correlate with anticline features seen on the vertical seismic slice.

The opacity settings in figure 1b create a skeletonized image of the larger features, which can be used to tie vertical slices through the seismic amplitude volume.

In figure 2a we show a chair display of a vertical slice through a seismic amplitude and a strat-slice extracted from a most-positive principal curvature volume; (b) the same chair display when curvature transparency retains only the highest positive values. The transparency function is defined on the far right.

Figure 3 – Vertical slice of seismic amplitude and stratal slices through (a) seismic amplitude and (b) a merging of coherence (black), most-positive principal curvature (red), and principal most-negative principal curvature (blue) volumes. Transparency has been used to retain only very low coherence values, very high positive curvature and very low negative curvature.

Blended Data Renders Visual Value

By SATINDER CHOPRA and KURT J. MARFURT

See Seismic Data, page 40
AAPG Returns to Europe for Milan ICE

Italy will be in the AAPG spotlight in October as it becomes, for the first time ever, the host country for the AAPG International Conference and Exhibition. This year's ICE will be held Oct. 23-26 in Milan, at the Milano Convention Centre, crafted on the theme “Following Da Vinci’s Footsteps to Future Energy Resources: Innovations From Outcrops to Assets.”

The Milan ICE, in addition to offering more than 500 paper and poster presentations, also will feature a large exhibition hall, a featured luncheon talk by former BP executive Tony Hayward, a plenary session that touches the da Vinci theme from a professional and industry perspective, plus special forums that focus on:

- The Business of Energy – Keys to Profitability
- New Technology Directions in Exploration and Production
- Professional Issues for Professional Geologists
- Innovation From Outcrops to Assets

ICE general chair Jonathan Craig said the meeting will celebrate and aspire to the creative vision and spirit of innovation historically associated with Milan and the region – and the technical program is specifically designed for international audiences.

“Our committee has assembled an exceptional program covering advances in all the hot topics of petroleum geoscience,” Craig said. Milan’s geological setting is an added bonus, he said. “Milan is located at the foot of the Alps, where spectacular carbonate outcrops provide analogs for many of the world’s most prolific carbonate reservoirs,” he said.

“It is most appropriate,” he said, “that the theme of ‘Carbonate Reservoirs – From Pores to Productions,’ together with a special focus on exploration and production in the Alpine-Himalaya Fold Belt and Foreland Basins from Europe and North Africa to South Asia, will make this conference a landmark event.”

Technical program co-chair Pablo Flores, points specifically to a session on Europe, North Africa and the Balkans as being “particularly relevant” for European petroleum geology, and cited papers on the Levant Basin, one of the Region’s current hot areas of exploration, as well as a number of presentations dealing with unconventional resources.

Other “highly anticipated presentations,” according to Flores and co-chair Keith Gerdes, include:
- Papers on the Brazilian and West African subsalt reservoirs and rifted margin exploration.
- A special focus on East Africa geology and exploration.
- Updates and new looks at the Middle East.

Online registration and details of the technical program and ICE events remains open, at aapg.org/milan2011.

Seismic Data

from page 38

Next we show the equivalent chair view, but with most-positive principal curvature (figure 2b) and most-negative principal curvature (figure 2c) co-rendered with coherence. Only very low values of coherence have been retained. High and intermediate coherence values have been made transparent.

Note that the edges of the channels are again well-defined on the coherence surface. The channels appear as trends in which most-positive curvatures have their maximum positive values.

Our tentative interpretation is that these are two sand-prone channels incised in a shale matrix that has undergone differential compaction.

Consistent with this interpretation, the most-negative curvature anomalies define the edges of the channels (figure 2c).

In figure 3a we show an inline vertical slice and a phantom horizon slice 8 ms below an interpreted zero crossing. In figure 3b we show an equivalent chair view where the phantom horizon slice is correlated with most-positive and most-negative curvature volumes.

Using transparency, we have retained only the higher positive values of most-positive curvature and the lowest negative values of most-negative curvatures.

This co-rendered display shows red lineaments associated with the upthrown sides of the faults and blue lineaments associated with downthrown sides. Such displays convey more information than do strat cube displays made from seismic attribute or curvature attribute volumes.

Conclusions

✓ Seismic attributes need to be visualized in such a way that they add maximum value to a seismic interpretation.
✓ Three-D visualization capability can be a powerful tool to integrate different types of data.
✓ Well log curves, VSP data or microseismic data also can be brought together in 3-D views to provide visual corroboration of data information and to build higher levels of confidence in interpretations.

(Editor’s note: AAPG member Satinder Chopra is with Arcis Corp., Calgary, Canada, and AAPG member Kurt J. Marfurt is with the University of Oklahoma, Norman, Okla. Chopra also was the winner of the 2010 AAPG George C. Martin Award.)